
Re-engineering C++ Component Models Via Automatic Program
Transformation

 Robert L. Akers, Ph.D.
lakers@semdesigns.com

 Ira D. Baxter, Ph.D.
idbaxter@semdesigns.com

Semantic Designs Inc.

Brian J. Ellis Kenn R. Luecke
The Boeing Company

Michael Mehlich, Ph.D.
mmehlich@semdesigns.com

 Abstract
Automated program transformation holds promise

for a variety of software life cycle endeavors,
particularly where the size of legacy systems makes
code analysis, re-engineering, and evolution difficult
and expensive. But constructing highly scalable
transformation tools supporting modern languages in
full generality is itself a painstaking and expensive
process. This cost can be managed by developing a
common transformation system infrastructure re-
useable by derived tools that each address specific
tasks, thus leveraging the infrastructure costs. This
paper describes the Design Maintenance System
(DMS1), a practical, commercial program analysis
and transformation system, and discusses how it was
employed to construct a custom modernization tool
being applied to a large C++ industrial avionics
system. The tool transforms components developed in
a 1990’s-era component style to a more modern
CORBA-like component framework, preserving
functionality.

Keywords: software transformation, software analysis,

C++, migration, component architectures, legacy systems,
compilers, re-engineering, abstract syntax trees, patterns,
rewrite rules.

1. Introduction

DMS is a mature infrastructure for doing analysis
and transformation of software based on deep
semantic understanding of programs. It supports
virtually all conventional software languages and can
be applied to systems built from multiple coding and
design languages. The Boeing Migration Tool (BMT),
built using the DMS infrastructure, automatically
transforms the component framework of a large C++
avionics system from a 1990’s era model to one based

1 DMS is a registered trademark of Semantic Designs Inc.

on a proprietary variant of the Common Object
Resource Broker Architecture (CORBA), preserving
functionality but introducing regular interfaces for
inter-component communication.

We describe the DMS infrastructure and the BMT
application itself to provide insight into how
transformation technology can address software
analysis and evolution problems where scale,
complexity, and custom needs are barriers. We
illustrate some of the kinds of syntheses and
transformations required and some of the issues
involved with transforming industrial C++ code. We
also discuss the development experience, including the
strategies for approaching the scale of the migration,
the style of interaction that evolved between the tool-
building company and its industrial customer, and how
the project adapted to changing requirements. We
present Boeing’s assessment of the project, assess the
return on investment of the automated migration
strategy, and present some reflections on the
experience to guide others considering large scale
code re-engineering projects.

2. The DMS Software Reengineering
Toolkit

DMS provides an infrastructure for software
transformation based on deep semantic understanding
of programs. Programs are internalized via DMS-
generated parsers that exist for virtually all
conventional languages. Analyses and manipulations
are performed on abstract syntax tree (AST)
representations of the programs, and transformed
programs are printed with prettyprinters for the
appropriate languages.

The Toolkit can accept and simultaneously utilize
definitions of multiple, arbitrary specification and
implementation languages (domains) and can apply
analyses and transformations to source code written in
any combination of defined domains. Transformations
may be either written as procedural code or expressed
as source-to-source rewrite rules in an enriched syntax

Lexers/
Parsers

Transformation
Engine

Transforms

Analyzers

Procedures

Prettyprinter Definitions

Parser
Definition

Source
Files
(Domain
Notation)

Compiler
Data
Structures

Language
Descriptions

Viewer

Prettyprinters

Debug
Text

Attribute
Evaluators

Sequencing;
Transforms

Symbol Table

Declarations

Domain
Definit ion
Reader

Compiler
Structures

Analysis + Transform
Descriptions

= Tool Definit ion

Revised
Source
Files

Figure 1 The DMS architecture

for the defined domains. Rewrite rules
may be optionally qualified by
arbitrary semantic conditions. The
DMS Toolkit can be considered as
extremely generalized compiler
technology. It presently includes the
following tightly integrated facilities:
• A hypergraph foundation for

capturing program representations
(e.g., ASTs, flow graphs, etc.) in a
form convenient for processing.

• Complete interfaces for
procedurally manipulating general
hypergraphs and ASTs.

• A means for defining language
syntax and deriving parsers and
prettyprinters for arbitrary context
free languages to convert domain instances (e.g.
source code) to and from internal forms.

• Support for name and type analysis and defining
and updating arbitrary namespaces containing
name, type, and location information with arbitrary
scoping rules.

• Attribute evaluation for encoding arbitrary analyses
over ASTs with rules tied to grammar elements.

• An AST-to-AST rewriting engine that understands
algebraic properties (e.g., associativity,
commutativity).

• The ability to specify and apply source-to-source
program transformations based on language syntax.
Such transforms can operate within a language or
across language boundaries.

• A procedural framework for connecting these
pieces and adding arbitrary code.
The DMS architecture is illustrated in Figure 1.

Notice that the infrastructure supports multiple domain
notations (source code languages), so that multiple
languages can be handled or generated by a given tool.

We are presently implementing a general scheme
for capturing arbitrary control flow graphs (including
exceptions, continuations, parallelism and asynchrony)
and carrying out data flow analyses across such
graphs. Our goal is to build scalable infrastructure,
one aspect of which is support for computational scale.
DMS is implemented in a parallel programming
language, PARLANSE [13], which enables DMS to
run on commodity x86 symmetric-multiprocessing
workstations.

C++ is among the many domains implemented
within DMS, and the system contains complete
preprocessors, parsers, name and type resolvers, and
prettyprinters for both the ANSI and Visual C++ 6.0
dialects. Unlike a compiler preprocessor, the DMS
C++ preprocessor preserves both the original form and
expanded manifestation of the directives within the
AST so that programs can be manipulated,

transformed, and printed with preprocessor directives
preserved, even containing preprocessor conditionals.
The C++ name and type resolver has been extended to
fully support preprocessor conditionals, creating a
symbol table with conditional entries for symbols and
conditional relationships between lexical scopes
containing such symbols.

DMS has been under development for nine years.
As presently constituted, it has been used for a variety
of large scale commercial activities, including cross-
platform migrations, domain-specific code generation,
and construction of a variety of conventional software
engineering tools implementing tasks such as
dead/clone code elimination, test code coverage,
execution profiling, source code browsing, and static
metrics analysis.

A more complete overview of DMS is presented in
[5], including discussion of how DMS was extensively
used to create itself. For example, the DMS lexer
generator, prettyprinter generator, and its name and
type resolution analyzers for various languages are all
tools created with DMS. Various other DMS-based
tools are described on the Semantic Designs Inc. (SD)
web site [16].

3. The Boeing Migration Tool

Boeing's Bold Stroke avionics component software
architecture is based on the best practices of the mid-
1990's [17]. Component technology has since
matured, and the Common Object Resource Broker
Architecture (CORBA) component model has
emerged as a standard. The U.S. Government's
Defense Advanced Research Projects Agency's
Program Composition for Embedded Systems
(DARPA-PCES) program and the Object Management
Group (OMG) are sponsoring development of a
CORBA-inspired standard real time embedded system
component model (CCMRT) [8], which offers

Method calls

Facet : Offered service

Events

facet

event
sink

receptacle

event source

C
o
m
p
o
n
e
n
t

A

C
o
m
p
o
n
e
n
t

B

C
o
m
p
o
n
e
n

t
Event Sink : Trigger

Receptacle : Outbound
interface

Event Source : Signal

Figure 2- CORBA component relationships
Runtime
Wiring

standardization, improved interoperability, superior
encapsulation, and interfaces for ongoing development
of distributed, real time, embedded systems like Bold
Stroke. Standardization also provides a base for tools
for design and analysis of such systems, and for easier
integration of newly developed technologies such as
advanced schedulers and telecommunication
bandwidth managers.

Boeing wishes to upgrade its airframe software to a
more modern architecture, a proprietary CCMRT
variant known as PRiSm (Product line Real Time
embedded System). This will allow more regular
interoperability, standardization across flight
platforms, and opportunities for integrating emerging
technologies that require CORBA-like interfaces. Yet
since the legacy software is operating in mature flight
environments, maintaining functionality is critical.
The modernization effort, then, must not alter
functionality as it melds
legacy components into
the modern component
framework.

The task of
converting components
is straightforward and
well understood, but a
great deal of detail must
be managed with
rigorous regularity and
completeness. Since
Bold Stroke is
implemented in C++,
the complexity of the
language and its
preprocessor requires
careful attention to
semantic detail. With thousands of legacy components
now fielded, the sheer size of the migration task is an
extraordinary barrier to success. With the use of C++
libraries, approximately 250,000 lines of C++ source
contributes to a typical component, and a sound
understanding of a component's name space requires
comprehension of all this code.

To deal with the scale, semantic sensitivity, and
regularity issues, DARPA, Boeing, and SD decided to
automate the component migration using a custom
DMS-based tool. DMS, with its C++ front end
complete with name and type resolution, its unique
C++ preprocessor, its transformation capability, and
its scalability, was a uniquely qualified substrate for
constructing a migration tool that blended code
synthesis with code reorganization. Automating the
migration process assures regularity of the
transformation across all components and allows the
examination of transformation correctness to focus
primarily on the general transforms rather than on

particular, potentially idiosyncratic examples. It also
ensures a uniform treatment in a variety of ways
including name conventions for new entities,
commenting conventions, code layout, and file
organization.

Figure 2 diagrams the relationship of
communicating CORBA components. Facets are
classes that provide related methods implementing a
service, i.e., an area of functional concern. Event sinks
provide entry points for signaling changes of state
upstream, to which the component may wish to react.
A similar interface exists for outgoing calls, with event
sources being a standard route through which the
demand for service is signaled to other components,
and receptacles providing connections to the instances
of facets for other components. Components are wired
together at configuration time, prior to system
execution.

While event sinks and facets are very similar ideas
with respect to data flow, they are distinct in the
CORBA model for several reasons. The functionality
of a facet is specific to each facet and component and
to the services it offers, and facets share little
commonality in form or function with each other or
with facets of other components. Event sinks, on the
other hand, implement a standard protocol for inter-
component event signaling. Though the code specifics
vary with the components’ functional interfaces, the
function, style, and structure of event sinks are
consistent across all components, and hence they are
given distinct, stylized identity and treatment, likewise
for event sources and receptacles.

The legacy component structure is essentially flat,
with all a component’s methods typically collected in
a very few classes (often just one), each defined with
.h and .cpp files. One principal piece of the
migration involves factoring a component into facets,
each forming a distinct class populated with methods

reflecting a particular area of concern. Other classes,
like the event sinks and receptacles, must be
synthesized at a more fine-grained level, extracting
code fragments or connection information from the
legacy system.

Factoring a component into functional facets
requires human understanding. Essentially, the legacy
interface methods must be sorted into bins
corresponding to the facets, and indicative names
given to the new facet classes. To provide a clean
specification facility for the Boeing engineers using
the BMT, SD developed a simple facet specification
language. For each component, an engineer names the
facets and uniquely identifies which methods (via
simple name, qualified name, or signature if
necessary) comprise its interface. The bulk of the
migration engineer's coding task is formulating facet
specifications for all the components to be migrated, a
very easy task for a knowledgeable engineer. The
facet language itself is defined as a DMS domain,
allowing DMS to automatically generate a parser from
its grammar and to define specification processing
tools as attribute evaluators over the facet grammar.
Figure 3 shows a facet specification for a simple, two-
facet component. The list of legacy classes prescribe
which classes are to be transformed as part of the
component. Façade declarations specify the legacy
classes in which the facet interface methods appear.
Facet method parameters need be supplied only to
select from overloaded methods.

Figure 4 illustrates the essential factoring of the
monolithic legacy class into CORBA/PRiSm facets
(but does not reflect the activity related to event sinks,
receptacles, or other new PRiSm classes.) The
methods identified in the engineer’s facet specification
are relocated into new facet classes. References from
within those methods to outside entities are modified
with additional pointers to resolve to the originally
intended entities. Furthermore, references in the rest
of the system to the relocated methods are also
adjusted via an indirection to point into the new facet
classes. Declarations of all these new pointers must
appear in the appropriate contexts, along with
#i ncl ude directives to provide the necessary
namespace elements.

The BMT translates components one at a time.
Input consists of the source code, the facet
specification for the component being translated, and
facet specifications for all components with which it
communicates, plus a few bookkeeping directives.
Conversion input is succinct.

The BMT’s migration process begins with the
parsing of all the facet specifications relating to the
component. A DMS-based attribute evaluator over the
facet domain traverses the facet specifications' abstract

syntax trees and collates it into a database of facts for
use during component transformation.

After processing the facet specifications, the BMT
parses and does full name and type resolution on the
C++ source code base, including files referenced via
#i ncl ude. These would naturally include the files
for the façade classes of the neighboring components.
The DMS C++ name and type resolver constructs a
symbol table for the entire source base, allowing
lookup of identifiers and methods with respect to any
lexical scope. Only by internalizing the entire code
base in this manner can symbol lookups and the
transformations depending on them be guaranteed
sound. This is one key point that defeats scripting
languages for writing C++ transformers.

Four particular kinds of transformations typify
what the BMT does to perform the component
migration:
• New classes for facets and their interfaces are

generated based on the facet specifications. The
BMT generates a base class for each facet,
essentially a standard form and a "wrapper" class
inheriting from the facet and containing one method
for each method in the functional facet's interface
(i.e., for each method listed in the facet
specification). These wrapper methods simply relay
calls to the corresponding method in the
component's legacy classes. Constructing the

COMPONENT AV_Logi cal Posi t i on_St at eDevi ce

FACET AV_Logi cal Posi t i on_I nt er nal St at us
FACET AV_Logi cal Posi t i on_St at eMode

 LEGACYCLASSES
AV_Logi cal Posi t i on_St at eDevi ce

END COMPONENT

FACET AV_Logi cal Posi t i on_I nt er nal St at us
 FACADE AV_Logi cal Posi t i on_St at eDevi ce

 " I s I ni t Dat aRequest ed"
 " I sAl manacRequest ed"
 " I sDai l yKeyI nUseVer i f i ed"
 " I sDai l yKeyI nUseI ncor r ect "
 " I sGUV_User "
 " I sRecei ver Cont ai nKeys"
 " Get Mi ss i onDur at i on"
 " I sRPU_Fai l ed"
 " Get Memor yBat t er yLow"
 " Get Recei ver LRU_Fai l "

END FACET

FACET AV_Logi cal Posi t i on_St at eMode
FACADE AV_Logi cal Posi t i on_St at eDevi ce
 " bool Get BI T_St at us () "
 " Get Posi t i on_St at eRequest ed"
 " Get Posi t i on_St at eAchi eved"
 " Get Event Suppl i er Ref er ence"

END FACET

Figure 3 - Facet specification example

wrapper methods involves replicating each
method's header and utilizing its arguments in the
relayed call. Appropriate #i ncl ude directives
must be generated for access to entities incorporated
for these purposes, as well as to access standard
component infrastructure. A nest of constructor
patterns expressed in the DMS pattern language pull
the pieces together into a class definition, thus
synthesizing the code from patterns. The change
from a pure CORBA scheme like that illustrated in
Figure 4 to a wrapper scheme was a major mid-
project design change that allowed modernized
components to interoperate with untranslated legacy
components during the long-term modernization
transition.

• After constructing the facets and wrappers, the
BMT transforms all the legacy code calls to any of
the facets' methods, redirecting original method
calls on the legacy class to instead call the
appropriate wrapper method via newly declared
pointers. The pointer declarations, their
initializations, and their employment in access paths
are all inserted using source-to-source transforms,
the latter with conditionals to focus their
applicability. An example of one such transform
appears in Figure 5. The various arguments are
typed by their corresponding C++ grammar
nonterminal names, and the rule transforms one
postfix_expression to another. Within the body of
the rule, argument names are preceded by "\". The
rule uses concatenation to construct the symbol for

the new pointer and adds the indirection. It will be
applied only when the "pointer_refers" predicate
establishes that the class_pointer and method name
correspond to a specified facet method. If the rule
does fire, it will also trigger some tool-internal
bookkeeping as a side effect.

 -+ Rewrites legacy cross-component method references,
 -+ e.g., Comp1->methname(arg1, arg2) rewrites to
 -+ Comp1BarFacetPtr_->methname(arg1,arg2)
 private rule adjust_component_access(
 class_ptr: identifier, method:identifier,
 arguments:expression_list):
 postfix_expression->postfix_expression
 = "\class_pointer->\method(\arguments)"
 ->
 "\concat\(\concat\(
 \get_facet_name\(\class_pointer\,\method\)\,
 Facet_\)\, \class_ptr\) ->\method(\arguments)"
 with side-effect remove_identifier_table_entries
 (class_pointer, method)
 if pointer_to_foreign_component(class_ptr).

 Figure 5 - DMS access path rewrite rule

DMS patterns and rewrite rules are
parameterized by typed AST’ s from the domain
(C++). Quoted forms within the definitions are in
the domain syntax, but within quotes, backslashes
can precede non-domain lexemes. For example the
references to the class_pointer, method, and
arguments parameters are preceded with slashes, as
are references to the names of other patterns (concat
and get_facet_name), and syntactic artifacts of other
pattern parameter lists (parentheses and commas).

B MTc lass Radar {
 h1 x ;
 h2 y;
 r1 m 1(…) { …h1f(x)
 … h2f(y)… }
 vo id m 2(…) { …m 3(y)…
 … h1f(x)… }
 r3 m 3(…) { …m 1(y)… }

 vo id no ti f y() {
 …m 2(x ,y)… }
}

c lass h1 {
 …
 h1r h1f(…) { … }
}

com ponen t Radar:

facet APIone {
 x ;
 m 1;
}
facet APItw o {
 m2;
 m3;
}

Component modernization specification

c lass Radar {
 h2 y;
 API1facet* APIone;
 API2facet* APItw o ;
 Radar(){
 APIone=new API1facet(th is);
 APItw o=new API2facet(th is); }
 void no t i fy()
 {… APItw o ->
 m 2(APIone->x ,y)…} }

c lass API2facet {
 Radar* componen t;
 API2facet(Radar *radar){
 com ponen t=radar ; }
 void m 2(…)
 { …m 3(com ponen t->y)…
 … h1f(com ponen t->
 APIone->x)… }
 r3 m 3(…) {
 … com ponen t->
 APIone->m 1(
 com ponent->y)… } }

c lass API1facet {
 h1 x ;
 Radar* com ponen t;
 API1facet(Radar *radar){
 com ponen t=radar; }
 r1 m 1(…) { …h1f(x)…
 h2f(com ponen t->y)… } }c lass h2 {

 …
 h1r h2f(…) { … }
}

Legacy component with
monolithic API

CORBA-style component
with faceted subAPIs

Fig ure 4 – Facto r ing legacy c lasses in to
CORBA/PriSm facets

The application of the rewrite rule can be made
subject to a Boolean condition, as it is here by the
external function
pointer_refers_class_of_foreign_component, and
may also, upon application, trigger a side effect like
external procedure remove_identifier_table_entries.

• “Receptacle” classes provide an image of the
outgoing interface of a component to the other
components whose methods it calls. Since a
particular component's connectivity to other
components is not known at compile time, the
receptacles provide a wiring harness through which
dynamic configuration code can connect instances
into a flight configuration. Constructing the
receptacles involves searching all of a component's
classes for outgoing method calls, identifying which
facet the called method belongs to, and generating
code to serve each connection accordingly. Figure 6
illustrates a portion of a receptacle .cpp file. The
figure illustrates one of the Connect methods, which
are always of the same form, but which draw
specifics from the calling environment and the
specifics of the legacy method. The BMT creates
include directives appropriate to the calling and
called components and as required by other symbols
appearing in the method headers. Standard
receptacle comments are inserted.

• Event sinks are classes that are among the
communication aspects of a component,
representing an entry point through which an event
service can deliver its
product. They are uniform
in style and structure for all
components in a way that is
more or less independent of
the components’
functionality, but their
content is nevertheless
driven by the legacy code’s
particular interconnectivity
behavior. Since the essential
code fragments for event
processing already exist in
the legacy classes (though
their locations are not
specified to the BMT and
cannot generally be
characterized), synthesizing
event sinks involves having
the BMT identify idiomatic
legacy event-handling code
throughout the legacy
component by matching
against DMS patterns for
those idioms. Code thus
identified is moved into the

new event sink class, which is synthesized with a
standard framework of constructive patterns.
Control structures are then merged to consolidate
the handling of each specific kind of event. One
necessary complication of this extensive movement
of code from one lexical environment to another is
that all relevant name space declarations must be
constructed in the new event sink. Definitions,
declarations, and #i ncl ude directives supporting
the moved code must be constructed in the event
sink class, and newly irrelevant declarations must
be removed from the original environment. Doing
all this requires extensive use of the DMS symbol
table for the application, which among other things
retains knowledge of the locations within files of
the declarations and definitions of all symbols.
Event sink code extraction and synthesis combines
pattern-based recognition of idiomatic forms with
namespace and code reorganization and
simplification via semantically informed
transformation.
The BMT, then, significantly modifies the legacy

classes for the component by extracting code
segments, by modifying access paths, by removing
component pointer declarations and initializations, by
adding facet pointer declarations and initializations, by
reconfiguring the namespace as necessary, and by
doing other miscellaneous modifications. It also
introduces new classes for the component’s facets,
facet wrappers, receptacles, event sinks, and an

// File incorporates PRiSm Component Model (Wrapper version)
// file generated by the BMT tool for the PCES II Program
#include "AMV__LogicalPosition_StateDevice/AMV__LogicalPosition_StateDevice.h"
#include "AMV__LogicalPosition_StateDevice/AMC__Position1Receptacle.h"
#include "AMV__LogicalPosition_StateDevice/AMC__Position1Wrapper.h"
AMC__Position1Receptacle::AMC__Position1Receptacle(
 AMV__LogicalPosition_StateDevice * theAMV__LogicalPosition_StateDevicePtr)
: theAMV__LogicalPosition_StateDevicePtr_(theAMV__LogicalPosition_StateDevicePtr)
 {
 //There is nothing to instantiate.
 }
AMC__Position1Receptacle::~AMC__Position1Receptacle()
 {

 //Nothing needs to be destructed.
 }
bool AMC__Position1Receptacle::ConnectAMV__LogicalPosition_StateDevice (
 BM__Facet *item)
 {
 // Cast the parameter from a BM__Facet pointer to a wrapper pointer
 if (AMC__Position1Wrapper *tempCompPtr =
 platform_dependent_do_dynamic_cast<AMC__Position1Wrapper *>(item))
 {
 theAMV__LogicalPosition_StateDevicePtr_ ->
 AddAMC__Position1Connection(tempCompPtr);
 return true;
 } ...
 Figure 6 - A portion of a generated receptacle.cpp file

“equivalent interface” class desired by Boeing
component designers. Each kind of new class has a
regular structure, but the details vary widely, based on
the characteristics of the component being translated.
Some classes, like the event sinks, are populated with
code fragments extracted from the legacy class and
assembled into new methods under some collation
heuristics. In our experience, the amount of new or
modified code the BMT produces in a converted
component amounts to over half the amount of code in
the legacy component. Since a typical component-
based system involves a large number of components,
this makes a clear economy-of-scale argument for
using automatic transformation in component re-
engineering.

4. Experience

Boeing has extensive expertise in avionics and
component engineering, but only a nascent
appreciation of transformation technology. The tool
builder, Semantic Designs, understands transformation
and the mechanized semantics of C++, but had only
cursory prior understanding of CORBA component
technology and avionics. Other operational issues in
the conversion were the strict proprietary nature of
most of the source code, uncertainty about what exotic
C++ features might turn up in the large source code
base, Boeing’s evolving understanding of the details
of the target configuration, and the geographical
separation between Boeing and SD.

To deal with most of these issues, Boeing chose a
particular non-proprietary component and performed a
hand conversion, thus providing SD with a concrete
image of source and target and a benchmark for
progress. The hand conversion forced details into
Boeing's consideration. New requirements developed
in mid-project, modifying the target (on one occasion
very significantly). The flexible DMS approach
allowed SD to adjust the tool accordingly and with
manageable reworking. Had a manual conversion
altered its course at the same point, the cost for re-
coding code that had already been ported would have
been very high.

Being unburdened by application knowledge, SD
was able to focus purely on translation issues,
removing from the conversion endeavor the temptation
to make application-related adjustments that could add
instability. Electronic communication of benchmark
results provided a basis for ongoing evaluation, and
phone conferences supported development of
sufficient bilateral understanding of tool and
component technologies, minimizing the need for
travel.

SD's lack of access to the full source code base
required the tool builders to prepare for worst case
scenarios of what C++ features would be encountered

by the BMT in the larger source base. This forced
development of SD's C++ preprocessing and name
resolution infrastructure to handle the cross product of
preprocessing conditionals, templates, and macros.
These improvements both hardened the tool against
unanticipated stress and strengthened the DMS
infrastructure for future projects.

5. Evaluation

Boeing used the BMT to convert two large
components handling navigation and launch area
region computations to the PRiSm Component Model
for use in the successful DARPA PCES Flight
Demonstration in April, 2005.

Tool input was extremely easy to formulate. One
script, which could be shared among all components,
set environment variables guiding the tool into the
source code base and then invoked the tool.
Formulating component-specific input took generally
around 20 minutes per component. This time
commitment could be less for smaller components and
for engineers more experienced using BMT. The
BMT converts one component at a time. (A batch file
could very easily be written to convert multiple
components at once). Usually the tool would execute
for approximately ten minutes on a Dell 610 Precision
Desktop with dual processor, producing a re-
engineered component ready for post-processing by
the human engineer. The generated and modified code
conformed to Boeing's style standards and was free of
irregularities and errors.

Human engineers did a modest amount of hand-
finishing, mostly in situations understood in advance
to require human discretion. In these cases, the tool
highlighted the generated code with comments
recommending some particular action and sometimes
generated candidate code. Roughly half the time, this
candidate code was sufficient; other cases required
hand modification. The most difficult part of the
conversion was the event sink mechanization. For
input components that had their event mechanization
spread across several classes, the BMT correctly
moved the code fragments into the event sinks, but the
human engineer was required to update some code
inside the transitioned code fragments, making
judgements, for instance, about whether some
aggregations of code should be encapsulated in new
functions. These judgement-based decisions would
have been necessary with a hand conversion as well.
More extensive engineering of the BMT might have
eliminated this manual requirement by applying
heuristics.

Testing consisted of very close code review and
testing of the benchmark component, plus visual
inspection and conventional testing of other
components.

Among the advantages of using the BMT were:
• All code was generated on the basis of a simple

facet specification. The facet specifications were
extremely easy and quick to write. The generated
code was always complete with respect to the
specifications.

• No negative side effects were generated by the tool.
This means the tool did not generate code in places
that it was not desired, nor did the tool move any
code fragments to places that were not desired,
mistakes that scripting approaches are more prone
to making.

• The tool’s name resolution capability proved to be a
major advantage over the scripting approaches
usually used, which often create unpredictable side
effects that BMT is capable of avoiding.
By using the BMT, we reduced the time necessary

to convert the two components used for the DARPA
PCES Demonstration by approximately half,
compared to the time required to convert the
components by hand. This time commitment is based
on the entire conversion process, which consists of
converting the component, post processing the
component based on the BMT-generated comments,
writing the component’s dynamic configuration
manager by hand, and testing and integrating the
converted component in the resultant software
product. For a large project with hundreds or even
thousands of components a 50% reduction in total
conversion time enables a tremendous cost and time
reduction. The tool-based approach would represent
the difference between machine-hours and man-
centuries of code development labor, between
feasibility and infeasibility of mass conversion.

6. Return on Investment

Developing a custom migration tool takes a
significant effort. Not including the DMS
environment contribution, the BMT required 13,000
lines of new tool code. This development cost must be
balanced against the alternative cost of doing the tool's
work by hand, so the tradeoff for mechanized
migration depends predominately on the amount of
code being ported. For small applications, the effort is
not worthwhile, but with even a modest sized legacy
system, the economics quickly turn positive.

One benchmark legacy component conversion
gives an idea of the scale of this conversion. The
legacy component, typical in size and complexity,
contained 9,931 lines of source code. The BMT-
converted component contained 9,456 lines, including
2,109 lines of code in newly generated classes and
2,222 modified lines in the residual legacy classes.
Scaling these numbers, to convert a mere 60
components would require revision or creation of over
250,000 lines of code. Porting four such components

would cause more new code to be written than went
into the BMT itself. With airframes typically
containing thousands of components, the economic
advantage of mechanized migration is compelling.

The BMT automates only the coding part of the
migration. Testing and integration are also significant
factors, and some hand polishing of the BMT output
was required. Coding time was reduced to near zero,
and the savings in coding time alone allowed a
reduction of approximately half the total time required
to migrate the components used for the DARPA PCES
demonstration. The regularity of style in automatically
migrated code provides a less quantifiable but
worthwhile extra value.

The measure of economic success is not whether a
migration tool achieves 100 percent automation, but
whether it saves time and money overall. Boeing felt
that converting 75 percent of the code automatically
would produce significant cost savings, a good rule of
thumb for modest-sized projects. Anything less puts
the benefit in a gray area. The code produced by the
BMT was 95 percent to 98 percent finished. This
number could have been driven higher, but the
additional tool development cost did not justify the
dwindling payoff in this pilot project.

Cost-benefit tradeoffs should be considered when
scoping the task of a migration tool, even while the
project is in progress. In this project, for example, we
could have developed elaborate heuristics for
consolidating event sink code, but we judged the
expense to not be worthwhile for the pilot project. Any
project of this kind would face similar issues.

Huge projects would easily justify greater
refinement of a migration tool, resulting in less need
for hand polishing the results, and thus driving coding
costs ever lower. Mechanization can mean the
difference between feasibility and infeasibility of even
a medium size project.

7. Technological Barriers

One inherent technical difficulty is the automatic
conversion of semantically informal code comments.
Though comments are preserved through the BMT
migration, what they say may not be wholly
appropriate for the newly modified code. Developing
accurate interpretations of free text discussing legacy
code and modifying legacy comments to reflect code
modifications would challenge the state of the art in
both natural language and code understanding. So
while new documentation can be generated to
accurately reflect the semantics of new code, legacy
documentation must be viewed as subject to human
revision.

Though the DMS C++ preprocessor capability,
with its special treatment of conditionals, was up to
the task for this migration, extremely extensive use of

C/C++ preprocessors exploiting dialect differences,
conditionals, templates, and macros can lead to an
explosion of possible semantic interpretations of
system code and a resource problem for a migration
tool. Preserving all these interpretations, however, is
necessary for soundness. Furthermore, since macro
definitions and invocations must be preserved as ASTs
through migration, macros that do not map cleanly to
native language constructs (e.g., producing only
fragments of a syntactic construct or fragments that
partially overlap multiple constructs) are very difficult
to maintain. Though these unstructured macro
definitions cause no problem for compilers, since they
are relieved prior to semantic analysis with respect to
any single compilation, to preserve them in the
abstract representation of a program for all cases is
quite difficult.

All these factors suggest that for some projects
using languages involving preprocessors, a cleanup of
preprocessor code prior to system migration is in
order. For reasons of scale and complexity, this is a
separate problem that could be tackled with another
automated, customized tool.

8. Observations

A few over-arching observations apply to this and
other mass transformation projects:
• Mass migrations are best not mingled with changes

in business logic, optimization, or other software
enhancements. Entangling tasks muddies
requirements, induces extra interaction between tool
builders and application specialists, and makes
evaluation difficult, at the expense of soundness,
time, and money. Related tasks may be considered
independently, applying new transformation tools if
appropriate.

• Automating a transformation task helps deal with
changing requirements. Modifying a few rewrite
rules, constructive patterns, and organizational code
is far easier and results in a more consistent product
than revising a mass of hand-translated code.
Changes implemented in the tool may manifest in
all previously migrated code by simply re-running
the modified tool on the original sources. This
allows blending the requirements definition
timeframe into the implementation timeframe,
which can significantly shorten the whole project.

• Cleanly factoring a migration task between tool
builders and application specialists allows
proprietary information to remain within the
application owner’s organization while forcing tool
builders toward optimal generality. Lack of access
to proprietary sources, or in general lack of full
visibility into a customer’s project induces
transformation engineers to anticipate problems and

confront them in advance by building robust tools.
Surprises therefore tend to be less overwhelming.

• Automated transformation allows the code base to
evolve independently during the migration tool
development effort. To get a final product, the tool
may be re-run on the most recent source code base
at the end of tool development. There is no need
for parallel maintenance of both the fielded system
and the system being migrated.

• Using a mature infrastructure makes the
construction of transformation-based tools not just
economically viable, but advantageous. Not doing
this is infeasible. Language front ends and
analyzers, transformation engines, and other
components are all very significant pieces of
software. The BMT contains approximately 1.5
million lines of source code, but most is DMS
infrastructure. Only 13,000 lines of code are BMT-
specific. Furthermore, off-the-shelf components are
inadequate to the task. For example, lex and yacc do
not produce ASTs that are suitable for
manipulation. Only a common parsing
infrastructure can produce AST structures that
allow a rewrite engine and code generation
infrastructure to function over arbitrary domain
languages and combinations of languages.

• Customers can become transformation tool
builders. There is a significant learning curve in
building transformation-based tools. A customer
seeking a single tool can save money by letting
transformation specialists build it. But
transformation methods are well-suited to a range of
software life cycle tasks, and engineers can be
trained to build tools themselves and incorporate the
technology into their operation with great benefit
and cost savings.

9. Related Work

Source-to-source program transformations were
originally conceived as a method of program
generation in the 1970s [2], and the technology has
been developing since [10, 11]. The idea that
transformations could be used for software
maintenance and evolution by changing a specification
and re-synthesizing was suggested in the early 80s [4].
Porting software and carrying out changes were
suggested and demonstrated in the late 80s [1, 9].
Theory about how to modify programs
transformationally using previously captured design
information was suggested in 1990[3]. Refine [6,14]
was a groundbreaking software transformation engine
which was used as a basis for some blackbox
commercial automated migration projects. But
program transformation as a serious tool for software
evolution is largely unrealized in practice.

Mechanical refactoring [13] was proposed in 1990
as a technique for restructuring programs and was
recently popularized [7] as a methodology with
suggestions for tool support. Tools for refactoring
SmallTalk [15] and Java have started to appear, and
some experimental work has been done in refactoring
C++ [18]. The better Java tools [19,20] do some
sophisticated refactorings such as ExtractMethod;
others in the market require some manual validation of
the steps.

10. Future Directions

The PRiSm or CORBA component technologies
impose computational overhead as service requests are
routed through several new layers of component
communication protocol. Essentially, the extra layers
exist to provide separation of concern in design and
coding and to provide plug-and-play capability at
configuration time. Mechanized static partial
evaluation could relieve this overhead. With semantic
awareness of the component wiring, a transformation
tool could be developed to statically evaluate the
various communication indirections, sparing run-time
overhead. In this highly performance-sensitive
environment, the effort could be well justified.

Semantics-based analysis can also be applied to
deeper partial evaluation of the code resulting from the
dynamic assembly of components into a flight
configuration. For example, code that supports
configurations that are not in play and conditionals
that dynamically test for those configurations can be
eliminated. Indirectly called procedures can be in-
lined, avoiding indirection and call overhead.
Combining automated analysis and code
transformation at build time should enhance
performance.

11. Acknowledgements

We thank our collaborator in this effort, the Boeing
Company, to the DARPA PCES program for funding,
and to Lorraine Bier for document preparation.

12. References
[1] G. Arango, I. Baxter, C. Pidgeon, P. Freeman, "TMM:

Software Maintenance by Transformation", IEEE
Software 3(3), May 1986, pp. 27-39.

[2] R. M. Balzer, N. M. Goldman, and D. S. Wile, "On the
Transformational Implementation Approach to
Programming", Proceeding, 2nd International
Conference on Software Engineering, Oct. 1976, pp.
337-344.

[3] I. Baxter, Transformational Maintenance by Reuse of
Design Histories, Ph.D. Thesis, Information and

Computer Science Department, University of California
at Irvine, Nov. 1990, TR 90-36.

[4] I. Baxter, "Design Maintenance Systems",
Communications of the ACM 35(4), 1992, ACM.

[5] I. D. Baxter, C. Pidgeon., and M. Mehlich, "DMS:
Program Transformations for Practical Scalable
Software Evolution". Proceedings of the 26th
International Conference on Software Engineering,
2004.

[6] S. Burson, G. B. Kotik, and L. Z. Markosian, "A
Program Transformation Approach to Automating
Software Reengineering", Proceedings of the 14th
Annual International Computer Software &
Applications Conference (COMPSAC 90), IEEE
Publishers, 1990.

[7] M. Fowler, Refactoring: Improving the Design of
Existing Code, Addison Wesley 1999.

[8] V. Gidding, B. Beckwith, "Real-time CORBA
Tutorial", OMG's Workshop on Distributed Object
Computing for Real-Time and Embedded Systems
2003,
www.omg.org/news/meetings/workshops/rt_embedded2
003

[9] W. L. Johnson and M. S. Feather, "Using Evolution
Transforms to Construct Specifications", M. Lowry and
R. McCartney (eds.), Automating Software Design,
AAAI Press, 1991.

[10] E. Kant, F. Daube, E. MacGregor, and J. Wald,
"Scientific Programming by Automated Synthesis", in:
Michael R. Lowery and Robert D. McCartney (eds.),
Automating Software Design, MIT Press, 1991.

[11] J. Neighbors, "Draco: A Method for Engineering
Reusable Software Systems", in: T. Biggerstaff and A.
Perlis (eds.), Software Reusability, ACM Press 1989.

[12] W.F. Opdyke, Refactoring Object-Oriented
Frameworks, PhD Thesis, University of Illinois at
Urbana-Champaign. Also available as Technical Report
UIUCDCS-R-92-1759, Department of Computer
Science, University of Illinois at Urbana-Champaign.

[13] PARLANSE Reference Manual, Semantic Designs,
1998.

[14] Reasoning Systems, Palo Alto, CA, "Refine Language
Tools", 1993.

[15] D. Roberts, J. Brant, R. Johnson and W. Opdyke, "An
Automated Refactoring Tool", Proceedings of ICAST
'96: 12th International Conference on Advanced
Science and Technology, Chicago, Illinois. April, 1996.

[16] Semantic Designs, Inc., www.semanticdesigns.com.
[17] D. C. Sharp, "Reducing Avionics Software Cost

Through Component Based Product Line
Development", Proceedings of the 1998 Software
Technology Conference.

[18] L. Tokuda and D. Batory, "Evolving Object Oriented
Designs with Refactoring", Proceedings of the
Conference on Automated Software Engineering, IEEE,
1999.

[19] www.intellij.com. IDEA refactoring tool for Java.
[20] www.instantiations.com. Jfactor refactoring tool for

Java.

