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                          Abstract 
Automated program transformation holds promise 

for a variety of software life cycle endeavors, 
particularly where the size of legacy systems makes 
code analysis, re-engineering, and evolution difficult 
and expensive.  But constructing highly scalable 
transformation tools supporting modern languages in 
full generality is itself a painstaking and expensive 
process.  This cost can be managed by developing a 
common transformation system infrastructure re-
useable by derived tools that each address specific 
tasks, thus leveraging the infrastructure costs.  This 
paper describes the Design Maintenance System 
(DMS1), a practical, commercial program analysis 
and transformation system, and discusses how it was 
employed to construct a custom modernization tool 
being applied to a large C++ industrial avionics 
system. The tool transforms components developed in 
a 1990’s-era component style to a more modern 
CORBA-like component framework, preserving 
functionality. 

 
Keywords: software transformation, software analysis, 

C++, migration, component architectures, legacy systems, 
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1. Introduction 

DMS is a mature infrastructure for doing analysis 
and transformation of software based on deep 
semantic understanding of programs.  It supports 
virtually all conventional software languages and can 
be applied to systems built from multiple coding and 
design languages.  The Boeing Migration Tool (BMT), 
built using the DMS infrastructure, automatically 
transforms the component framework of a large C++ 
avionics system from a 1990’s era model to one based 

                                                
1 DMS is a registered trademark of Semantic Designs Inc. 

 

on a proprietary variant of the Common Object 
Resource Broker Architecture (CORBA), preserving 
functionality but introducing regular interfaces for 
inter-component communication.   

We describe the DMS infrastructure and the BMT 
application itself to provide insight into how 
transformation technology can address software 
analysis and evolution problems where scale, 
complexity, and custom needs are barriers. We 
illustrate some of the kinds of syntheses and 
transformations required and some of the issues 
involved with transforming industrial C++ code.  We 
also discuss the development experience, including the 
strategies for approaching the scale of the migration, 
the style of interaction that evolved between the tool-
building company and its industrial customer, and how 
the project adapted to changing requirements.  We 
present Boeing’s assessment of the project, assess the 
return on investment of the automated migration 
strategy, and present some reflections on the 
experience to guide others considering large scale 
code re-engineering projects. 

2. The DMS Software Reengineering 
Toolkit  

DMS provides an infrastructure for software 
transformation based on deep semantic understanding 
of programs.  Programs are internalized via DMS-
generated parsers that exist for virtually all 
conventional languages.  Analyses and manipulations 
are performed on abstract syntax tree (AST) 
representations of the programs, and transformed 
programs are printed with prettyprinters for the 
appropriate languages. 

The Toolkit can accept and simultaneously utilize 
definitions of multiple, arbitrary specification and 
implementation languages (domains) and can apply 
analyses and transformations to source code written in 
any combination of defined domains.  Transformations 
may be either written as procedural code or expressed 
as source-to-source rewrite rules in an enriched syntax 
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for the defined domains.  Rewrite rules 
may be optionally qualified by 
arbitrary semantic conditions. The 
DMS Toolkit can be considered as 
extremely generalized compiler 
technology.  It presently includes the 
following tightly integrated facilities:  
• A hypergraph foundation for 

capturing program representations 
(e.g., ASTs, flow graphs, etc.) in a 
form convenient for processing.  

• Complete interfaces for 
procedurally manipulating general 
hypergraphs and ASTs. 

• A means for defining language 
syntax and deriving parsers and 
prettyprinters for arbitrary context 
free languages to convert domain instances (e.g. 
source code) to and from internal forms. 

• Support for name and type analysis and defining 
and updating arbitrary namespaces containing 
name, type, and location information with arbitrary 
scoping rules. 

• Attribute evaluation for encoding arbitrary analyses 
over ASTs with rules tied to grammar elements. 

• An AST-to-AST rewriting engine that understands 
algebraic properties (e.g., associativity, 
commutativity). 

• The ability to specify and apply source-to-source 
program transformations based on language syntax. 
Such transforms can operate within a language or 
across language boundaries.   

• A procedural framework for connecting these 
pieces and adding arbitrary code. 
The DMS architecture is illustrated in Figure 1.  

Notice that the infrastructure supports multiple domain 
notations (source code languages), so that multiple 
languages can be handled or generated by a given tool.  

We are presently implementing a general scheme 
for capturing arbitrary control flow graphs (including 
exceptions, continuations, parallelism and asynchrony) 
and carrying out data flow analyses across such 
graphs.  Our goal is to build scalable infrastructure, 
one aspect of which is support for computational scale.  
DMS is implemented in a parallel programming 
language, PARLANSE [13], which enables DMS to 
run on commodity x86 symmetric-multiprocessing 
workstations. 

C++ is among the many domains implemented 
within DMS, and the system contains complete 
preprocessors, parsers, name and type resolvers, and 
prettyprinters for both the ANSI and Visual C++ 6.0 
dialects.  Unlike a compiler preprocessor, the DMS 
C++ preprocessor preserves both the original form and 
expanded manifestation of the directives within the 
AST so that programs can be manipulated, 

transformed, and printed with preprocessor directives 
preserved, even containing preprocessor conditionals.  
The C++ name and type resolver has been extended to 
fully support preprocessor conditionals, creating a 
symbol table with conditional entries for symbols and 
conditional relationships between lexical scopes 
containing such symbols. 

DMS has been under development for nine years.  
As presently constituted, it has been used for a variety 
of large scale commercial activities, including cross-
platform migrations, domain-specific code generation, 
and construction of a variety of conventional software 
engineering tools implementing tasks such as 
dead/clone code elimination, test code coverage, 
execution profiling, source code browsing, and static 
metrics analysis. 

A more complete overview of DMS is presented in 
[5], including discussion of how DMS was extensively 
used to create itself.  For example, the DMS lexer 
generator, prettyprinter generator, and its name and 
type resolution analyzers for various languages are all 
tools created with DMS.  Various other DMS-based 
tools are described on the Semantic Designs Inc. (SD) 
web site [16].  

3. The Boeing Migration Tool  

Boeing's Bold Stroke avionics component software 
architecture is based on the best practices of the mid-
1990's [17].  Component technology has since 
matured, and the Common Object Resource Broker 
Architecture (CORBA) component model has 
emerged as a standard.  The U.S. Government's 
Defense Advanced Research Projects Agency's 
Program Composition for Embedded Systems 
(DARPA-PCES) program and the Object Management 
Group (OMG) are sponsoring development of a 
CORBA-inspired standard real time embedded system 
component model (CCMRT) [8], which offers 
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standardization, improved interoperability, superior 
encapsulation, and interfaces for ongoing development 
of distributed, real time, embedded systems like Bold 
Stroke.  Standardization also provides a base for tools 
for design and analysis of such systems, and for easier 
integration of newly developed technologies such as 
advanced schedulers and telecommunication 
bandwidth managers.  

Boeing wishes to upgrade its airframe software to a 
more modern architecture, a proprietary CCMRT 
variant known as PRiSm (Product line Real Time 
embedded System). This will allow more regular 
interoperability, standardization across flight 
platforms, and opportunities for integrating emerging 
technologies that require CORBA-like interfaces.  Yet 
since the legacy software is operating in mature flight 
environments, maintaining functionality is critical. 
The modernization effort, then, must not alter 
functionality as it melds 
legacy components into 
the modern component 
framework.  

The task of 
converting components 
is straightforward and 
well understood, but a 
great deal of detail must 
be managed with 
rigorous regularity and 
completeness.  Since 
Bold Stroke is 
implemented in C++, 
the complexity of the 
language and its 
preprocessor requires 
careful attention to 
semantic detail.  With thousands of legacy components 
now fielded, the sheer size of the migration task is an 
extraordinary barrier to success.  With the use of C++ 
libraries, approximately 250,000 lines of C++ source 
contributes to a typical component, and a sound 
understanding of a component's name space requires 
comprehension of all this code.  

To deal with the scale, semantic sensitivity, and 
regularity issues, DARPA, Boeing, and SD decided to 
automate the component migration using a custom 
DMS-based tool.  DMS, with its C++ front end 
complete with name and type resolution, its unique 
C++ preprocessor, its transformation capability, and 
its scalability, was a uniquely qualified substrate for 
constructing a migration tool that blended code 
synthesis with code reorganization. Automating the 
migration process assures regularity of the 
transformation across all components and allows the 
examination of transformation correctness to focus 
primarily on the general transforms rather than on 

particular, potentially idiosyncratic examples. It also 
ensures a uniform treatment in a variety of ways 
including name conventions for new entities, 
commenting conventions, code layout, and file 
organization. 

Figure 2 diagrams the relationship of 
communicating CORBA components.  Facets are 
classes that provide related methods implementing a 
service, i.e., an area of functional concern. Event sinks 
provide entry points for signaling changes of state 
upstream, to which the component may wish to react.  
A similar interface exists for outgoing calls, with event 
sources being a standard route through which the 
demand for service is signaled to other components, 
and receptacles providing connections to the instances 
of facets for other components.  Components are wired 
together at configuration time, prior to system 
execution. 

While event sinks and facets are very similar ideas 
with respect to data flow, they are distinct in the 
CORBA model for several reasons. The functionality 
of a facet is specific to each facet and component and 
to the services it offers, and facets share little 
commonality in form or function with each other or 
with facets of other components.  Event sinks, on the 
other hand, implement a standard protocol for inter-
component event signaling.  Though the code specifics 
vary with the components’  functional interfaces, the 
function, style, and structure of event sinks are 
consistent across all components, and hence they are 
given distinct, stylized identity and treatment, likewise 
for event sources and receptacles. 

The legacy component structure is essentially flat, 
with all a component’s methods typically collected in 
a very few classes (often just one), each defined with 
.h and .cpp files.  One principal piece of the 
migration involves factoring a component into facets, 
each forming a distinct class populated with methods 



reflecting a particular  area of concern. Other classes, 
like the event sinks and receptacles, must be 
synthesized at a more fine-grained level, extracting 
code fragments or connection information from the 
legacy system.   

Factoring a component into functional facets 
requires human understanding. Essentially, the legacy 
interface methods must be sorted into bins 
corresponding to the facets, and indicative names 
given to the new facet classes.  To provide a clean 
specification facility for the Boeing engineers using 
the BMT, SD developed a simple facet specification 
language.  For each component, an engineer names the 
facets and uniquely identifies which methods (via 
simple name, qualified name, or signature if 
necessary) comprise its interface.  The bulk of the 
migration engineer's coding task is  formulating facet 
specifications for all the components to be migrated, a 
very easy task for a knowledgeable engineer.  The 
facet language itself is defined as a DMS domain, 
allowing DMS to automatically generate a parser from 
its grammar and to define specification processing 
tools as attribute evaluators over the facet grammar.  
Figure 3 shows a facet specification for a simple, two-
facet component. The list of legacy classes prescribe 
which classes are to be transformed as part of the 
component. Façade declarations specify the legacy 
classes in which the facet interface methods appear. 
Facet method parameters need be supplied only to 
select from overloaded methods. 

Figure 4 illustrates the essential factoring of the 
monolithic legacy class into CORBA/PRiSm facets 
(but does not reflect the activity related to event sinks, 
receptacles, or other new PRiSm classes.) The 
methods identified in the engineer’s facet specification 
are relocated into new facet classes.  References from 
within those methods to outside entities are modified 
with additional pointers to resolve to the originally 
intended entities.  Furthermore, references in the rest 
of the system to the relocated methods are also 
adjusted via an indirection to point into the new facet 
classes.  Declarations of all these new pointers must 
appear in the appropriate contexts, along with 
#i ncl ude directives to provide the necessary 
namespace elements. 

The BMT translates components one at a time. 
Input consists of the source code, the facet 
specification for the component being translated, and 
facet specifications for all components with which it 
communicates, plus a few bookkeeping directives.  
Conversion input is succinct. 

The BMT’s migration process begins with the 
parsing of all the facet specifications relating to the 
component.  A DMS-based attribute evaluator over the 
facet domain traverses the facet specifications' abstract 

syntax trees and collates it into a database of facts for 
use during component transformation.   

After processing the facet specifications, the BMT 
parses and does full name and type resolution on the 
C++ source code base, including files referenced via 
#i ncl ude.  These would naturally include the files 
for the façade classes of the neighboring components.  
The DMS C++ name and type resolver constructs a 
symbol table for the entire source base, allowing 
lookup of identifiers and methods with respect to any 
lexical scope.  Only by internalizing the entire code 
base in this manner can symbol lookups and the 
transformations depending on them be guaranteed 
sound.  This is one key point that defeats scripting 
languages for writing C++ transformers. 

Four particular kinds of transformations typify 
what the BMT does to perform the component 
migration: 
• New classes for facets and their interfaces are 

generated based on the facet specifications.  The 
BMT generates a base class for each facet, 
essentially a standard form and a "wrapper" class 
inheriting from the facet and containing one method 
for each method in the functional facet's interface 
(i.e., for each method listed in the facet 
specification).  These wrapper methods simply relay 
calls to the corresponding method in the 
component's legacy classes.  Constructing the 

 
COMPONENT AV_Logi cal Posi t i on_St at eDevi ce  

FACET AV_Logi cal Posi t i on_I nt er nal St at us 
FACET AV_Logi cal Posi t i on_St at eMode 

  LEGACYCLASSES  
AV_Logi cal Posi t i on_St at eDevi ce 

END COMPONENT  
 

FACET AV_Logi cal Posi t i on_I nt er nal St at us 
  FACADE AV_Logi cal Posi t i on_St at eDevi ce 

    " I s I ni t Dat aRequest ed"  
    " I sAl manacRequest ed"  
    " I sDai l yKeyI nUseVer i f i ed"  
    " I sDai l yKeyI nUseI ncor r ect "  
    " I sGUV_User "  
    " I sRecei ver Cont ai nKeys"  
    " Get Mi ss i onDur at i on"  
    " I sRPU_Fai l ed"  
    " Get Memor yBat t er yLow"  
    " Get Recei ver LRU_Fai l "  

END FACET 
 

FACET AV_Logi cal Posi t i on_St at eMode 
FACADE AV_Logi cal Posi t i on_St at eDevi ce 
    " bool  Get BI T_St at us ( ) "  
    " Get Posi t i on_St at eRequest ed"  
    " Get Posi t i on_St at eAchi eved"  
    " Get Event Suppl i er Ref er ence"  

END FACET 
 

Figure 3 - Facet specification example 
 



wrapper methods involves replicating each 
method's header and utilizing its arguments in the 
relayed call.  Appropriate #i ncl ude directives 
must be generated for access to entities incorporated 
for these purposes, as well as to access standard 
component infrastructure.  A nest of constructor 
patterns expressed in the DMS pattern language pull 
the pieces together into a class definition, thus 
synthesizing the code from patterns. The change 
from a pure CORBA scheme like that illustrated in 
Figure 4 to a wrapper scheme was a major mid-
project design change that allowed modernized 
components to interoperate with untranslated legacy 
components during the long-term modernization 
transition. 

• After constructing the facets and wrappers, the 
BMT transforms all the legacy code calls to any of 
the facets' methods, redirecting original method 
calls on the legacy class to instead call the 
appropriate wrapper method via newly declared 
pointers.  The pointer declarations, their 
initializations, and their employment in access paths 
are all inserted using source-to-source transforms, 
the latter with conditionals to focus their 
applicability.  An example of one such transform 
appears in Figure 5. The various arguments are 
typed by their corresponding C++ grammar 
nonterminal names, and the rule transforms one 
postfix_expression to another.  Within the body of 
the rule, argument names are preceded by "\".  The 
rule uses concatenation to construct the symbol for 

the new pointer and adds the indirection.  It will be 
applied only when the "pointer_refers" predicate 
establishes that the class_pointer and method name 
correspond to a specified facet method.  If the rule 
does fire, it will also trigger some tool-internal 
bookkeeping as a side effect. 

  -+ Rewrites legacy cross-component method references, 
  -+ e.g., Comp1->methname(arg1, arg2) rewrites to 
  -+ Comp1BarFacetPtr_->methname(arg1,arg2) 
  private rule adjust_component_access( 
      class_ptr: identifier, method:identifier, 
      arguments:expression_list):  
                     postfix_expression->postfix_expression  
  = "\class_pointer->\method(\arguments)" 
     -> 
     "\concat\(\concat\( 
          \get_facet_name\(\class_pointer\,\method\)\, 
             Facet_\)\,  \class_ptr\) ->\method(\arguments)" 
   with side-effect remove_identifier_table_entries 
         (class_pointer, method) 
   if pointer_to_foreign_component(class_ptr). 
 
    Figure 5 - DMS access path rewrite rule 

DMS patterns and rewrite rules are 
parameterized by typed AST’ s  from the domain 
(C++). Quoted forms within the definitions are in 
the domain syntax, but within quotes, backslashes 
can precede non-domain lexemes.  For example the 
references to the class_pointer, method, and 
arguments parameters are preceded with slashes, as 
are references to the names of other patterns (concat 
and get_facet_name), and syntactic artifacts of other 
pattern parameter lists (parentheses and commas).  

B MTc lass  Radar  {
  h1 x ;
  h2 y;
  r1 m 1(…) { …h1f(x )
             … h2f(y)… }
  vo id  m 2(…) { …m 3(y)…
               … h1f(x )…  }
  r3 m 3(…) { …m 1(y)… }

  vo id  no ti f y() {
              …m 2(x ,y)… }
}

c lass  h1 {
  …
  h1r h1f(…) { …  }
}

com ponen t Radar:

facet  APIone {
   x ;
   m 1;
}
facet  APItw o  {
   m2;
   m3;
}

Component modernization specification

c lass  Radar  {
  h2 y;
  API1facet* APIone;
  API2facet* APItw o ;
  Radar(){
    APIone=new   API1facet(th is );
    APItw o=new   API2facet(th is );  }
  void  no t i fy()
   {… APItw o ->
         m 2(APIone->x ,y)…}  }

c lass  API2facet {
  Radar* componen t;
  API2facet(Radar  *radar ){
    com ponen t=radar ;  }
  void  m 2(…)
   { …m 3(com ponen t->y)…
     … h1f(com ponen t->
            APIone->x)…  }
  r3 m 3(…) {
     … com ponen t->
        APIone->m 1(
           com ponent->y)… }  }

c lass  API1facet  {
  h1 x ;
  Radar* com ponen t;
  API1facet(Radar *radar){
    com ponen t=radar;  }
  r1 m 1(… ) { …h1f(x )…
      h2f(com ponen t->y)… }   }c lass  h2 {

  …
  h1r h2f(…) { …  }
}

Legacy component with
monolithic API

CORBA-style component
with faceted subAPIs

Fig ure 4 – Facto r ing  legacy c lasses  in to
CORBA/PriSm  facets



The application of the rewrite rule can be made 
subject to a Boolean condition, as it is here by the 
external function 
pointer_refers_class_of_foreign_component, and 
may also, upon application, trigger a side effect like 
external procedure remove_identifier_table_entries. 

•  “Receptacle”  classes provide an image of the 
outgoing interface of a component to the other 
components whose methods it calls. Since a 
particular component's connectivity to other 
components is not known at compile time, the 
receptacles provide a wiring harness through which 
dynamic configuration code can connect instances 
into a flight configuration.  Constructing the 
receptacles involves searching all of a component's 
classes for outgoing method calls, identifying which 
facet the called method belongs to, and generating 
code to serve each connection accordingly. Figure 6 
illustrates a portion of a receptacle .cpp file. The 
figure illustrates one of the Connect methods, which 
are always of the same form, but which draw 
specifics from the calling environment and the 
specifics of the legacy method. The BMT creates 
include directives appropriate to the calling and 
called components and as required by other symbols 
appearing in the method headers.  Standard 
receptacle comments are inserted.  

• Event sinks are classes that are among the 
communication aspects of a component, 
representing an entry point through which an event 
service can deliver its 
product.  They are uniform 
in style and structure for all 
components in a way that is 
more or less independent of 
the components’ 
functionality, but their 
content is nevertheless 
driven by the legacy code’s 
particular interconnectivity 
behavior.  Since the essential 
code fragments for event 
processing already exist in 
the legacy classes (though 
their locations are not 
specified to the BMT and 
cannot generally be 
characterized), synthesizing 
event sinks involves having 
the BMT identify idiomatic 
legacy event-handling code 
throughout the legacy 
component by matching 
against DMS patterns for 
those idioms.  Code thus 
identified is moved into the 

new event sink class, which is synthesized with a 
standard framework of constructive patterns. 
Control structures are then merged to consolidate 
the handling of each specific kind of event.  One 
necessary complication of this extensive movement 
of code from one lexical environment to another is 
that all relevant name space declarations must be 
constructed in the new event sink.  Definitions, 
declarations, and #i ncl ude directives supporting 
the moved code must be constructed in the event 
sink class, and newly irrelevant declarations must 
be removed from the original environment.  Doing 
all this requires extensive use of the DMS symbol 
table for the application, which among other things 
retains knowledge of the locations within files of 
the declarations and definitions of all symbols. 
Event sink code extraction and synthesis combines 
pattern-based recognition of idiomatic forms with 
namespace and code reorganization and 
simplification via semantically informed 
transformation.  
The BMT, then, significantly modifies the legacy 

classes for the component by extracting code 
segments, by modifying access paths, by removing 
component pointer declarations and initializations, by 
adding facet pointer declarations and initializations, by 
reconfiguring the namespace as necessary, and by 
doing other miscellaneous modifications.  It also 
introduces new classes for the component’s facets, 
facet wrappers, receptacles, event sinks, and an 

// File incorporates PRiSm Component Model (Wrapper version)
// file generated by the BMT tool for the PCES II Program
#include "AMV__LogicalPosition_StateDevice/AMV__LogicalPosition_StateDevice.h"
#include "AMV__LogicalPosition_StateDevice/AMC__Position1Receptacle.h"
#include "AMV__LogicalPosition_StateDevice/AMC__Position1Wrapper.h"
AMC__Position1Receptacle::AMC__Position1Receptacle(
         AMV__LogicalPosition_StateDevice * theAMV__LogicalPosition_StateDevicePtr)
: theAMV__LogicalPosition_StateDevicePtr_(theAMV__LogicalPosition_StateDevicePtr)
   {
      //There is nothing to instantiate.
   }
AMC__Position1Receptacle::~AMC__Position1Receptacle()
   {

   //Nothing needs to be destructed.
   }
bool AMC__Position1Receptacle::ConnectAMV__LogicalPosition_StateDevice (
          BM__Facet *item)
   {
      // Cast the parameter from a BM__Facet pointer to a wrapper pointer
      if (AMC__Position1Wrapper *tempCompPtr =
            platform_dependent_do_dynamic_cast<AMC__Position1Wrapper *>(item))
         {
            theAMV__LogicalPosition_StateDevicePtr_ ->
                 AddAMC__Position1Connection(tempCompPtr);
            return true;
         }         ...
            Figure 6 - A portion of a generated receptacle.cpp file



“equivalent interface”  class desired by Boeing 
component designers.  Each kind of new class has a 
regular structure, but the details vary widely, based on 
the characteristics of the component being translated.  
Some classes, like the event sinks, are populated with 
code fragments extracted from the legacy class and 
assembled into new methods under some collation 
heuristics.  In our experience, the amount of new or 
modified code the BMT produces in a converted 
component amounts to over half the amount of code in 
the legacy component.  Since a typical component-
based system involves a large number of components, 
this makes a clear economy-of-scale argument for 
using automatic transformation in component re-
engineering. 

4. Experience 

Boeing has extensive expertise in avionics and 
component engineering, but only a nascent 
appreciation of transformation technology. The tool 
builder, Semantic Designs, understands transformation 
and the mechanized semantics of C++, but had only 
cursory prior understanding of CORBA component 
technology and avionics.  Other operational issues in 
the conversion were the strict proprietary nature of 
most of the source code, uncertainty about what exotic 
C++ features might turn up in the large source code 
base, Boeing’s evolving understanding of the details 
of the target configuration, and the geographical 
separation between Boeing and SD.  

To deal with most of these issues, Boeing chose a 
particular non-proprietary component and performed a 
hand conversion, thus providing SD with a concrete 
image of source and target and a benchmark for 
progress.  The hand conversion forced details into 
Boeing's consideration.  New requirements developed 
in mid-project, modifying the target (on one occasion 
very significantly).  The flexible DMS approach 
allowed SD to adjust the tool accordingly and with 
manageable reworking.  Had a manual conversion 
altered its course at the same point, the cost for re-
coding code that had already been ported would have 
been very high. 

Being unburdened by application knowledge, SD 
was able to focus purely on translation issues, 
removing from the conversion endeavor the temptation 
to make application-related adjustments that could add 
instability.  Electronic communication of benchmark 
results provided a basis for ongoing evaluation, and 
phone conferences supported development of 
sufficient bilateral understanding of tool and 
component technologies, minimizing the need for 
travel.  

SD's lack of access to the full source code base 
required the tool builders to prepare for worst case 
scenarios of what C++ features would be encountered 

by the BMT in the larger source base.  This forced 
development of SD's C++ preprocessing and name 
resolution infrastructure to handle the cross product of 
preprocessing conditionals, templates, and macros.  
These improvements both hardened the tool against 
unanticipated stress and strengthened the DMS 
infrastructure for future projects. 

5. Evaluation 

Boeing used the BMT to convert two large 
components handling navigation and launch area 
region computations to the PRiSm Component Model 
for use in the successful DARPA PCES Flight 
Demonstration in April, 2005.  

Tool input was extremely easy to formulate.  One 
script, which could be shared among all components, 
set environment variables guiding the tool into the 
source code base and then invoked the tool.  
Formulating component-specific input took generally 
around 20 minutes per component.  This time 
commitment could be less for smaller components and 
for engineers more experienced using BMT.  The 
BMT converts one component at a time. (A batch file 
could very easily be written to convert multiple 
components at once).  Usually the tool would execute 
for approximately ten minutes on a Dell 610 Precision 
Desktop with dual processor, producing a re-
engineered component ready for post-processing by 
the human engineer.  The generated and modified code 
conformed to Boeing's style standards and was free of 
irregularities and errors. 

Human engineers did a modest amount of hand-
finishing, mostly in situations understood in advance 
to require human discretion. In these cases, the tool 
highlighted the generated code with comments 
recommending some particular action and sometimes 
generated candidate code. Roughly half the time, this 
candidate code was sufficient; other cases required 
hand modification. The most difficult part of the 
conversion was the event sink mechanization.  For 
input components that had their event mechanization 
spread across several classes, the BMT correctly 
moved the code fragments into the event sinks, but the 
human engineer was required to update some code 
inside the transitioned code fragments, making 
judgements, for instance, about whether some 
aggregations of code should be encapsulated in new 
functions. These judgement-based decisions would 
have been necessary with a hand conversion as well. 
More extensive engineering of the BMT might have 
eliminated this manual requirement by applying 
heuristics. 

Testing consisted of very close code review and 
testing of the benchmark component, plus visual 
inspection and conventional testing of other 
components. 



Among the advantages of using the BMT were: 
• All code was generated on the basis of a simple 

facet specification.  The facet specifications were 
extremely easy and quick to write.  The generated 
code was always complete with respect to the 
specifications.  

• No negative side effects were generated by the tool.  
This means the tool did not generate code in places 
that it was not desired, nor did the tool move any 
code fragments to places that were not desired, 
mistakes that scripting approaches are more prone 
to making. 

• The tool’s name resolution capability proved to be a 
major advantage over the scripting approaches 
usually used, which often create unpredictable side 
effects that BMT is capable of avoiding. 
By using the BMT, we reduced the time necessary 

to convert the two components used for the DARPA 
PCES Demonstration by approximately half, 
compared to the time required to convert the 
components by hand.  This time commitment is based 
on the entire conversion process, which consists of 
converting the component, post processing the 
component based on the BMT-generated comments, 
writing the component’s dynamic configuration 
manager by hand, and testing and integrating the 
converted component in the resultant software 
product.  For a large project with hundreds or even 
thousands of components a 50% reduction in total 
conversion time enables a tremendous cost and time 
reduction.  The tool-based approach would represent 
the difference between machine-hours and man-
centuries of code development labor, between 
feasibility and infeasibility of mass conversion. 

6. Return on Investment 

Developing a custom migration tool takes a 
significant effort.  Not including the DMS 
environment contribution, the BMT required 13,000 
lines of new tool code.  This development cost must be 
balanced against the alternative cost of doing the tool's 
work by hand, so the tradeoff for mechanized 
migration depends predominately on the amount of 
code being ported.  For small applications, the effort is 
not worthwhile, but with even a modest sized legacy 
system, the economics quickly turn positive.  

One benchmark legacy component conversion 
gives an idea of the scale of this conversion.  The 
legacy component, typical in size and complexity, 
contained 9,931 lines of source code.  The BMT-
converted component contained 9,456 lines, including 
2,109 lines of code in newly generated classes and 
2,222 modified lines in the residual legacy classes.  
Scaling these numbers, to convert a mere 60 
components would require revision or creation of over 
250,000 lines of code.  Porting four such components 

would cause more new code to be written than went 
into the BMT itself.  With airframes typically 
containing thousands of components, the economic 
advantage of mechanized migration is compelling.  

The BMT automates only the coding part of the 
migration. Testing and integration are also significant 
factors, and some hand polishing of the BMT output 
was required. Coding time was reduced to near zero, 
and the savings in coding time alone allowed a 
reduction of approximately half the total time required 
to migrate the components used for the DARPA PCES 
demonstration. The regularity of style in automatically 
migrated code provides a less quantifiable but  
worthwhile extra value.  

The measure of economic success is not whether a 
migration tool achieves 100 percent automation, but 
whether it saves time and money overall. Boeing felt 
that converting 75 percent of the code automatically 
would produce significant cost savings, a good rule of 
thumb for modest-sized projects. Anything less puts 
the benefit in a gray area. The code produced by the 
BMT was 95 percent to 98 percent finished. This 
number could have been driven higher, but the 
additional tool development cost did not justify the 
dwindling payoff in this pilot project.  

Cost-benefit tradeoffs should be considered when 
scoping the task of a migration tool, even while the 
project is in progress. In this project, for example, we 
could have developed elaborate heuristics for 
consolidating event sink code, but we judged the 
expense to not be worthwhile for the pilot project. Any 
project of this kind would face similar issues.  

Huge projects would easily justify greater 
refinement of a migration tool, resulting in less need 
for hand polishing the results, and thus driving coding 
costs ever lower. Mechanization can mean the 
difference between feasibility and infeasibility of even 
a medium size project.  

7. Technological Barriers 

One inherent technical difficulty is the automatic 
conversion of semantically informal code comments. 
Though comments are preserved through the BMT 
migration, what they say may not be wholly 
appropriate for the newly modified code. Developing 
accurate interpretations of free text discussing legacy 
code and modifying legacy comments to reflect code 
modifications would challenge the state of the art in 
both natural language and code understanding. So 
while new documentation can be generated to 
accurately reflect the semantics of new code, legacy 
documentation must be viewed as subject to human 
revision.  

Though the DMS C++ preprocessor capability, 
with its special treatment of conditionals, was up to 
the task for this migration, extremely extensive use of 



C/C++ preprocessors exploiting dialect differences, 
conditionals, templates, and macros can lead to an 
explosion of possible semantic interpretations of 
system code and a resource problem for a migration 
tool. Preserving all these interpretations, however, is 
necessary for soundness. Furthermore, since macro 
definitions and invocations must be preserved as ASTs 
through migration, macros that do not map cleanly to 
native language constructs (e.g., producing only 
fragments of a syntactic construct or fragments that 
partially overlap multiple constructs) are very difficult 
to maintain. Though these unstructured macro 
definitions cause no problem for compilers, since they 
are relieved prior to semantic analysis with respect to 
any single compilation, to preserve them in the 
abstract representation of a program for all cases is 
quite difficult.  

All these factors suggest that for some projects 
using languages involving preprocessors, a cleanup of 
preprocessor code prior to system migration is in 
order. For reasons of scale and complexity, this is a 
separate problem that could be tackled with another 
automated, customized tool. 

8. Observations 

A few over-arching observations apply to this and 
other mass transformation projects: 
• Mass migrations are best not mingled with changes 

in business logic, optimization, or other software 
enhancements.  Entangling tasks muddies 
requirements, induces extra interaction between tool 
builders and application specialists, and makes 
evaluation difficult, at the expense of soundness, 
time, and money. Related tasks may be considered 
independently, applying new transformation tools if 
appropriate. 

• Automating a transformation task helps deal with 
changing requirements.  Modifying a few rewrite 
rules, constructive patterns, and organizational code 
is far easier and results in a more consistent product 
than revising a mass of hand-translated code. 
Changes implemented in the tool may manifest in 
all previously migrated code by simply re-running 
the modified tool on the original sources.  This 
allows blending the requirements definition 
timeframe into the implementation timeframe, 
which can significantly shorten the whole project. 

• Cleanly factoring a migration task between tool 
builders and application specialists allows 
proprietary information to remain within the 
application owner’s organization while forcing tool 
builders toward optimal generality.   Lack of access 
to proprietary sources, or in general lack of full 
visibility into a customer’s project induces 
transformation engineers to anticipate problems and 

confront them in advance by building robust tools.  
Surprises therefore tend to be less overwhelming. 

• Automated transformation allows the code base to 
evolve independently during the migration tool 
development effort.  To get a final product, the tool 
may be re-run on the most recent source code base 
at the end of tool development.  There is no need 
for parallel maintenance of both the fielded system 
and the system being migrated. 

• Using a mature infrastructure makes the 
construction of transformation-based tools not just 
economically viable, but advantageous. Not doing 
this is infeasible. Language front ends and 
analyzers, transformation engines, and other 
components are all very significant pieces of 
software. The BMT contains approximately 1.5 
million lines of source code, but most is DMS 
infrastructure.  Only 13,000 lines of code are BMT-
specific.  Furthermore, off-the-shelf components are 
inadequate to the task. For example, lex and yacc do 
not produce ASTs that are suitable for 
manipulation.  Only a common parsing 
infrastructure can produce AST structures that 
allow a rewrite engine and code generation 
infrastructure to function over arbitrary domain 
languages and combinations of languages. 

• Customers can become transformation tool 
builders. There is a significant learning curve in 
building transformation-based tools.  A customer 
seeking a single tool can save money by letting 
transformation specialists build it.  But 
transformation methods are well-suited to a range of 
software life cycle tasks, and engineers can be 
trained to build tools themselves and incorporate the 
technology into their operation with great benefit 
and cost savings. 

9. Related Work 

Source-to-source program transformations were 
originally conceived as a method of program 
generation in the 1970s [2], and the technology has 
been developing since [10, 11]. The idea that 
transformations could be used for software 
maintenance and evolution by changing a specification 
and re-synthesizing was suggested in the early 80s [4]. 
Porting software and carrying out changes were 
suggested and demonstrated in the late 80s [1, 9]. 
Theory about how to modify programs 
transformationally using previously captured design 
information was suggested in 1990[3]. Refine [6,14] 
was a groundbreaking software transformation engine 
which was used as a basis for some blackbox 
commercial automated migration projects.  But 
program transformation as a serious tool for software 
evolution is largely unrealized in practice.   



Mechanical refactoring [13] was proposed in 1990 
as a technique for restructuring programs and was 
recently popularized [7] as a methodology with 
suggestions for tool support. Tools for refactoring 
SmallTalk [15] and Java have started to appear, and 
some experimental work has been done in refactoring 
C++ [18]. The better Java tools [19,20] do some 
sophisticated refactorings such as ExtractMethod; 
others in the market require some manual validation of 
the steps. 

10. Future Directions 

The PRiSm or CORBA component technologies 
impose computational overhead as service requests are 
routed through several new layers of component 
communication protocol. Essentially, the extra layers 
exist to provide separation of concern in design and 
coding and to provide plug-and-play capability at 
configuration time. Mechanized static partial 
evaluation could relieve this overhead. With semantic 
awareness of the component wiring, a transformation 
tool could be developed to statically evaluate the 
various communication indirections, sparing run-time 
overhead.  In this highly performance-sensitive 
environment, the effort could be well justified. 

Semantics-based analysis can also be applied to 
deeper partial evaluation of the code resulting from the 
dynamic assembly of components into a flight 
configuration.  For example, code that supports 
configurations that are not in play and conditionals 
that dynamically test for those configurations can be 
eliminated.  Indirectly called procedures can be in-
lined, avoiding indirection and call overhead. 
Combining automated analysis and code 
transformation at build time should enhance 
performance.  
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